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In order to meet the needs of high-speed development of optical communication system, a construction method of 

quasi-cyclic low-density parity-check (QC-LDPC) codes based on multiplicative group of finite field is proposed. The 

Tanner graph of parity check matrix of the code constructed by this method has no cycle of length 4, and it can make 

sure that the obtained code can get a good distance property. Simulation results show that when the bit error rate (BER) 

is 10-6, in the same simulation environment, the net coding gain (NCG) of the proposed QC-LDPC(3 780, 3 540) code 

with the code rate of 93.7% in this paper is improved by 2.18 dB and 1.6 dB respectively compared with those of the 

RS(255, 239) code in ITU-T G.975 and the LDPC(3 2640, 3 0592) code in ITU-T G.975.1. In addition, the NCG of the 

proposed QC-LDPC(3 780, 3 540) code is respectively 0.2 dB and 0.4 dB higher compared with those of the 

SG-QC-LDPC(3 780, 3 540) code based on the two different subgroups in finite field and the AS-QC-LDPC(3 780, 

3 540) code based on the two arbitrary sets of a finite field. Thus, the proposed QC-LDPC(3 780, 3 540) code in this 

paper can be well applied in optical communication systems.  

Document code: A Article ID: 1673-1905(2016)05-0349-4 

DOI  10.1007/s11801-016-6143-x 

 

 

                                                              

∗   This work has been supported by the National Natural Science Foundation of China (No.61571072), and the Basic and Advanced Technology 

Research Project in Chongqing (No.cstc2015jcyjA40015). 

∗∗  E-mail: 764716452@qq.com 

With the upgrading of optical communication system, 

speeding up the transmission rate, increasing the trans-

mission distance and enhancing the information capacity 

have become the inevitable development trend. However, 

the transmission effect produced during the transmission 

process is also increased, which hinders the improvement 

of system performance. As a result, the reliability of 

communication systems cannot be guaranteed[1]. The 

quasi-cyclic low-density parity-check (QC-LDPC) codes, 

as a special type of low-density parity-check (LDPC) 

codes, have the characteristics of LDPC codes[2], such as 

low decoding complexity and powerful error correction 

capability. At the same time, they are also characterized 

by less storage space, flexible code design, convenience 

for hardware implementation and so forth[3-8]. The appli-

cation of QC-LDPC codes in optical communication 

systems can well compensate for various damages in 

optical channels, to ensure the reliability of high-speed 

optical transmission system. For this reason, QC-LDPC 

codes have become a research hotspot in high-speed op-

tical fiber transmission system in recent years[9-14]. For a 

QC-LDPC code, the distance property is an important 

factor which affects the performance of the code. A 

QC-LDPC code with a good distance property can get 

excellent error correction performance. However, there 

are relatively few papers that discuss the distance prop-

erty of a QC-LDPC code[15,16]. Therefore, research on the 

distance property of a QC-LDPC code is helpful for con-

structing a good code.  

In this paper, a novel QC-LDPC code is designed by 

using the multiplicative group of finite field for optical 

communication systems, which can get a good distance 

property by properly selecting a stray parameter αβ set 

when the basis matrix is constructed. In addition, it is 

flexible to design the code length and rate by construct-

ing basis matrix with different dimensions. On this basis, 

an irregular QC-LDPC (3 780, 3 540) code with a code 

rate of 93.7% is constructed, and the error correction 

performance of the code is analyzed through simulation.  

Finite field, which can be rephrased as Galois field 

(GF), is expressed as GF(q), in which q is a prime num-

ber or an exponent of the prime number. If the set {α-∞ , 

α0, α1, …, αq-1 } constitutes q elements of GF(q), at the 

same time, when α-∞≡0 and α0=αq-1=1, the element α is 

called the primitive element of GF(q). The multiplicative 

group of GF(q) consists of q−1 different nonzero ele-

ments except α-∞ and αq-1 of the field. In GF(q), every 

nonzero element αi (0≤i≤q−2) can correspond to a (q−1) 

dimensional array z(αi)=(z0, z1,…, zq-2) on GF(2), known 

as the position vector of element αi. In z(αi), the ith 
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component zi=1, and all other q−2 components are 0. The 

position vector z(α-∞) corresponding to the element α-∞≡0 

is a q−1 dimensional array of zeros. Setting that η is a 

nonzero element of GF(q), take the position vector of η, 

αη, α2η, …, αq-2η as the row to form a (q−1)×(q−1) cyclic 

permutation matrix (CPM) on GF(2), among which the 

position vector z(αη) of αη is obtained by circularly 

shifting the position vector z(η) of η by one place to the 

right, the first row of CPM is gained by circularly shift-

ing the bottom row by one place to the right, and the 

other rows are got by circularly shifting adjacent previ-

ous row by one place to the right.  

The construction of QC-LDPC code is also the con-

struction of its parity check matrix. The main steps of 

general construction method of the parity check matrix 

of QC-LDPC code based on the finite field are as follows: 

(1) Design a basis matrix B; (2) Replace each element 

with its corresponding CPM in the basis matrix B, to 

extend B to a parity check matrix.  

In GF(q), set q=2s, where s is an arbitrary positive in-

teger, and the power form α0, α1, … , αq-2 of the primitive 

element α can be used to express the q−1 elements in the 

multiplicative group. At the same time, suppose that αβ is 

an arbitrary element in the multiplicative group, and use 

all elements in the multiplicative group to construct a 

basis matrix B which is expressed as  
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In Eq.(1), the structural properties of the basis matrix 

B are as follow. Firstly, these elements in each row 

(column) are different. Secondly, for 0≤i≤ q−2, 0≤k, 

l≤q−2 and k≠l, in αk
bi and αl

bj, there is only a position 

having the same element in GF(q) at most. Thirdly, for 

0≤i, j≤q−2 (i≠j) and 0≤k, l≤q−2, αk
bi and αl

bj can meet 

the requirement that it is not the same at least on q−2 

positions. 

Theorem 1[11]: for 0≤i, j≤q−2 (i≠j) and 0≤k, l≤q−2, αk
bi 

and αl
bj can be only allowed to be the same on a position 

at most. 

If αk
bi and αl

bj have the same element in GF(q) on two 

arbitrary and different positions (two different columns), 

use m and n (0≤m, n≤q−2) to represent the two positions, 

then the following expressions are workable:                

( ) ( )k i m m l j m mβ βα α α α α α− − − −− = − ,             (2) 

( ) ( )k i n n l j n nβ βα α α α α α− − − −− = − .              (3) 

Eqs.(2) and (3) can be simplified as 

( ) 0i j m n n mα α α− − −− = .                        (4) 

So it must be i=j or m−n=n−m, and apparently i=j is 

contradict with the known conditions. Furthermore, 

when m−n=n−m, there is 2(m−n)=c(q−1), because q=2s, 

q−1 cannot be divided evenly by 2. At the same time, 

because 0≤m, n≤q−2, we can get c=0, i.e., m=n, which is 

contradict with the assumption. So the assumption is 

false, which verifies that the constructed parity check 

matrix H can meet the conditions of Theorem 1. Ensure 

that H meets the RC-constraint, so that 4 cycles will not 

exist in the Tanner graph corresponding to H.  

For the basis matrix B in Eq.(1), by replacing each 

element in the matrix into a CPM corresponding to its 

position vector, the element is extended to be a 

(q−1)×(q−1) matrix A including only 0 and 1 on GF(2). 

After all the elements in B are replaced, the required par-

ity check matrix H can be obtained as  
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and the dimension of H is (q−1)(q−1)×(q−1)(q−1).

 To meet the demand of transmission in optical com-

munication systems, the design of QC-LDPC codes 

should consider the following several principles: high 

coding gain, high code rate, fast iterative decoding con-

vergence speed and low error floor or even no error floor 

phenomenon. Based on the above principles, first of all, 

determine the simulation parameters as s=6, q=2s=64, 

and construct a parity check matrix H with 63×63 rows 

and 63×63 columns according to the designed method in 

this paper. Secondly, take the check sub-matrix at the 

front 4×63 rows and the front 60×63 columns, in which 

the row weight of check sub-matrix is 59, while the 

column weight is 3 or 4. With this, construct an irregular 

QC-LDPC(3 780, 3 540) code with an approximate code 

rate of 93.7%. Carry out performance simulation to the 

constructed code: first conduct binary phase shift keying 

(BPSK) modulation, through additive white Gaussian 

noise (AWGN) channel, and then adopt sum product 

algorithm (SPA) for iterative decoding after demodula-

tion. 30 times of iteration is taken. The error correction 

capability is improved with the increase of times of itera-

tion. However, when the times of iteration increase from 

30 to 50, the improvement of its error correction capabil-

ity is low, but the decoding complexity is increased 

greatly. To achieve the best balance between complexity 

and performance, in this paper, 30 times of iteration is 

selected in the simulation of the QC-LDPC code.  

Theorem 2[16] : if the ratio of µ2/µ1 is smaller, where µ1 

and µ2 are the maximum and the sub-maximum eigen-
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values of the matrix HH
T, the corresponding QC-LDPC 

code will have a good distance property. 

In the proposed construction method in this paper, by 

selecting αβ value in basis matrix, the code has a good 

distance property, which further ensures that the code 

acquires good error correction performance. Tab.1 gives 

some specific ratios of µ2/µ1 for different β. It is easily 

seen from Tab.1 that when β is different, µ2/µ1 value is 

also different, and when β=58, the µ2/µ1 value is the 

minimum. Fig.1 shows the corresponding error correc-

tion performance of the code. When β=58, the error cor-

rection capability is better, which is in accordance with 

Theorem 2. Therefore, the irregular QC-LDPC(3 780, 

3 540) code with an approximate code rate of 93.7% is 

constructed as the code pattern under the optical com-

munication system by selecting s=6, q=2s=64 and β=58.  

 

Tab.1 The ratios of µ2/µ1 for different β 

β µ1 µ2 µ2/µ1 

9 233.000 63.987 0.275 

28 233.000 63.854 0.274 

57 236.509 63.012 0.268 

58 237.037 63.001 0.266 

 

 

Fig.1 The error correction performances of the con-

structed QC-LDPC (3 780, 3 540) code for different β 
 
To fully explain the performance of the QC-LDPC 

code constructed in this paper and prove that it can be 

better applied in optical communication system, we 

compare it with the RS(255, 239) code[17] in ITU-T 

G.975 standard, the LDPC(32 640, 30 592) code[18] in 

ITU-T G.975.1, the SG-QC-LDPC(3 780, 3 540) code[19] 

based on the two different subgroups in finite field and 

the AS-QC-LDPC(3 780, 3 540) code[20] based on the 

two arbitrary sets of a finite field, which have been 

widely used in optical communication system. And the 

simulation results are shown in the Fig.2.  

It can be known from Fig.2 that when the bit error rate 

(BER) is 10-6, the net coding gain (NCG) of the con-

structed QC-LDPC(3 780, 3 540) code is improved by 

2.18 dB and 1.6 dB than those of the RS(255, 239) code and 

the LDPC(32 640, 30 592) code, respectively. At the same 

time, NCG is improved by 0.2 dB and 0.4 dB respectively 

compared with those of the SG-QC-LDPC(3 780, 3 540) 

code and the AS-QC-LDPC(3 780, 3 540) code.  

 

 

Fig.2 The error correction performances of the con-

structed QC-LDPC (3780, 3540) code and other codes 

at the code rate of 93.7% 

 

In this paper, based on the multiplicative group of fi-

nite field GF(q), a construction method for QC-LDPC 

code with simple structure, low decoding complexity and 

good distance property is proposed, and a novel irregular 

QC-LDPC(3 780, 3 540) code appropriate for optical 

communication system is constructed by adjusting the 

stray parameter αβ set in basis matrix. Simulation results 

show that, compared with the RS(255, 239) code, the 

LDPC(32 640, 30 592) code, the SG-QC-LDPC(3 780, 

3 540) code and the AS-QC-LDPC(3 780, 3 540) code, 

the code constructed in the paper has higher NCG, which 

indicated that the code constructed in this paper applies 

to high-speed and long-haul optical communication sys-

tems. 
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